无码人妻一区二区三区四区免费看,公交车被两根粗大同进同出 ,国产精品久久久久无码av,成人精品一区二区三区电影

當前位置:
首頁 > 技術文章 > 表沒食子兒茶素 標準品性能特點
目錄導航 Directory
服務熱線
技術支持Article
表沒食子兒茶素 標準品性能特點
點擊次數:67 更新時間:2026-01-04

表沒食子兒茶素

分析標準品,HPLC≥98%

(-)-Epigallocatechin/EGC

CAS號:970-74-1

分子式:C15H14O7

分子量:306.27

MDLMFCD00075939

貨號

規格/參數/品牌

價格

貨期

YJ-B20105-20mg

分析標準品,HPLC≥98%

500.00

現貨

YJ-B20105-250mg

分析標準品,HPLC≥98%

2980.00

現貨

JS31356-250mg

90%(HPLC)

330.00

現貨

JS31356-1g

90%(HPLC)

690.00

現貨

JS31356-5g

90%(HPLC)

2100.00

現貨

JS31356-25g

90%(HPLC)

3580.00

現貨

產品介紹

熔點:208-210℃

沸點:685.63℃

比旋光度:-50 o (C=0.04, ETOH)

外觀:白色粉末

溶解性:水:5mg/ml(需要超聲)

敏感性:對熱敏感

儲存條件:2-8℃

注意:部分產品我司僅能提供部分信息,我司不保證所提供信息的權威性,僅供客戶參考交流研究之用。

參考文獻(237)

237. [IF=3.8] Yiwei Yuan et al."The Effects of Wuniuzao Green Tea on Mice With High‐Fat Diet‐Induced Liver Steatosis."Food Science & Nutrition.2025 Jul;13(7):e70505

236. [IF=5.1] Chunju Peng et al."Dynamic Changes in Sensory Quality and Chemical Components of Bingdao Ancient Tree Tea During Multiple Brewing."Foods.2025 Jan;14(14):2510

235. [IF=5.1] Jialin Chen et al."Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea."Foods.2025 Jan;14(14):2466

234. [IF=8] Xuejie Wang et al."Eurotium Cristatum fermented instant dark tea prevents obesity and promotes adipose thermogenesis via modulating the gut microbiota."FOOD RESEARCH INTERNATIONAL.2025 Jul;:116969

233. [IF=8.2] Caibi Zhou et al."Flavor changes of Yunnan large-leaf cultivar white tea during different aging periods."Food Chemistry-X.2025 Jul;:102846

232. [IF=8.5] Jiahui Gong et al."Insights from experiments and simulation of polydopamine modified carboxymethyl chitosan molecularly imprinted resins for adsorption of epicatechin in Rumex acetosa L.."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES.2025 Jul;:145761

231. [IF=8] Huiyan Jia et al."Endophytic bacterium V4 from albino tea plant enhances umami taste as well as flowery and roasted aromas in dried tea."FOOD RESEARCH INTERNATIONAL.2025 Jun;:116950

230. [IF=9.8] Zongde Jiang et al."Discovery and identification of novel color compound formed from EGCG upon heating: Integrated multispectral, sensory evaluation, metabolomics, and nuclear magnetic resonance."FOOD CHEMISTRY.2025 Jun;:145070

229. [IF=4.6] Yunpeng Qi et al."Mid-infrared spectroscopic identification of the right-fermented Baiyaojian for pulmonary inflammation therapy."SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY.2025 May;:126460

228. [IF=5.4] Xu Zhao et al."Hypoglycemic potential of sugarcane molasses-derived polyphenols: exploring the hypoglycemic mechanisms through in vitro α-glucosidase inhibition and intracellular glucose transport inhibition."Food & Function.2025 May;:

227. [IF=5.7] Miao Yu et al."A combined transcriptomic and metabolomic analysis reveals the metabolic reprogramming of developing thermogenic tissues in Nelumbo nucifera."PLANT JOURNAL.2025 May;122(3):e70193

226. [IF=8] Wanjun Long et al."A nanozyme colorimetric sensor combined with cloud-based machine learning algorithm-assisted WeChat mini program for intelligent identification of Chinese green tea."FOOD RESEARCH INTERNATIONAL.2025 May;:116668

225. [IF=12.5] Lin Chen et al."Structural diversity of tea phenolics modulates physicochemical properties and digestibility of wheat starch: Insights into gallic acid group-dependent interactions."CARBOHYDRATE POLYMERS.2025 May;:123763

224. [IF=1.8] Yuexing Chen et al."Optimization of White Tea Flavanol Extraction Process by the Ultrasonic-Assisted Deep Eutectic Solvent Method and Determination of the Antioxidant and Antibacterial Activity."Engineering Reports.2024 Oct;:e13018

223. [IF=7] Xianqiang Chen et al."Mechanism of red pigment formation in lotus rhizome soup during cooking: The role of polyphenols, iron and organic acids."FOOD RESEARCH INTERNATIONAL.2024 Dec;197:115266

222. [IF=8.5] Shengnan Wang et al."Postharvest changes in the phenolic and free volatile compound contents in Shine Muscat grapes at room temperature."FOOD CHEMISTRY.2025 Feb;465:141958

221. [IF=6.5] Honglin Mao et al."An integrative multi-omics approach reveals metabolic mechanism of flavonoids during anaerobic fermentation of de'ang pickled tea."Food Chemistry-X.2024 Nov;:102021

220. [IF=8.5] Xinyu Feng et al."Liubao insect tea polyphenols ameliorate DSS-induced experimental colitis by protecting intestinal barrier and regulating intestinal microbiota."FOOD CHEMISTRY.2024 Nov;:142156

219. [IF=8.5] Xiaomei Yan et al."Exogenous theanine application improves the fresh leaf yield and quality of an albino green tea Huangjinya."FOOD CHEMISTRY.2024 Nov;:142298

218. [IF=7.6] Chen Xiangxiang et al."Deactivating mutations in the catalytic site of a companion serine carboxypeptidase-like acyltransferase enhance catechin galloylation in Camellia plants."Horticulture Research.2024 Dec;:

217. [IF=2.7] Xuancheng Wang et al."Characterisation of the phytochemical and bioactivity profiles of raw tea, stale-aroma, and betelnut-aroma type of Liupao tea through GC/LC-MS-based metabolomics."Analytical Methods.2024 Dec;:

216. [IF=4.7] Bernard Ntezimana et al."Integrated Transcriptomic and Metabolomic Analyses Reveal Changes in Aroma- and Taste-Related Substances During the Withering Process of Black Tea."Foods.2024 Jan;13(23):3977

215. [IF=4.8] Yue Pan et al."Exploration on the cultivar specifity and processing progress of an excellent hybrid tea cultivar ‘Jinmudan’."Food Bioscience.2025 Jan;63:105660

214. [IF=4.7] Yan Huang et al."White Tea Aqueous Extract: A Potential Anti-Aging Agent Against High-Fat Diet-Induced Senescence in Drosophila melanogaster."Foods.2024 Jan;13(24):4034

213. [IF=6.1] Jianmei Xu et al."A genus-specific R2R3 MYB transcription factor, CsMYB34, regulates galloylated catechin biosynthesis in Camellia sinensis."PLANT PHYSIOLOGY AND BIOCHEMISTRY.2025 Feb;219:109401

212. [IF=4.7] Xin Wu et al."Exploration of chemical components and Rac1-dependent anti-hepatic fibrosis mechanism by total flavonoids derived from Tetrastigma hemsleyanum."Chinese Herbal Medicines.2024 Dec;:

211. [IF=8.5] Zi-Jian Feng et al."Regulation of catechins with different structure characteristics on the physicochemical properties of casein and the structure-activity relationship."FOOD CHEMISTRY.2025 Mar;467:142515

210. [IF=4.7] Zhaobao Wu et al."Differences in the Quality Components of Wuyi Rock Tea and Huizhou Rock Tea."Foods.2025 Jan;14(1):4

209. [IF=7] Lunfang Huang et al."The processing of shaking and standing improves the taste quality of summer black tea."FOOD RESEARCH INTERNATIONAL.2024 Dec;:115545

208. [IF=4.8] Shiqi Li et al."Enhancing antioxidant activity and functional benefits of kiwi ice wine via freeze concentration techniques and apple pomace freeze-dried powder."Food Bioscience.2025 Feb;64:106006

207. [IF=7] Jinjin Xue et al."Effect of cultivar and process on the astringency of matcha based on flavonoids-targeted metabolomic analysis."FOOD RESEARCH INTERNATIONAL.2025 Mar;204:115954

206. [IF=4.1] Majida AL-Wraikat et al."Microbial community and organic compounds composition analysis and the edible security of common buckwheat fermented via Kombucha consortium."Food Chemistry: Molecular Sciences.2025 Feb;:100247

205. [IF=4.7] Delai Yang et al."Natural Copper Ion Scavenger: Investigation of the Hepatoprotective Effects of Green Tea Extract in Toxic-Milk Mice with Wilson’s Disease Model."Foods.2025 Jan;14(4):679

204. [IF=6.5] De Zhou et al."Quality analysis and characteristic difference identification of organic tea and conventional planting tea based on ICP, HPLC and machine algorithm."Food Chemistry-X.2025 Feb;:102299

203. [IF=8.5] Lu Li et al."Non-volatile metabolite and in vitro bioactivity differences in green, white, and black teas."FOOD CHEMISTRY.2025 Jun;477:143580

202. [IF=4.7] Jiayi Xu et al."Characteristic Changes and Potential Markers of Flavour in Raw Pu-Erh Tea with Different Ageing Cycles Analysed by HPLC, HS-SPME-GC-MS, and OAV."Foods.2025 Feb;14(5):829

201. [IF=7] Zixi Yang et al."Investigation of the classification criteria and flavor compounds in diversified commercially ripened Pu-erh teas."FOOD RESEARCH INTERNATIONAL.2025 Mar;:116198

200. [IF=6.2] Bingsong Ma et al."Revealing the formation of aged aroma in raw Pu-erh tea during the storage through comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry and molecular docking."Current Research in Food Science.2025

199. [IF=4.6] Xinyu Wang et al."Core germplasm construction of tea plant populations based on genome-wide SNP and catechins in Shaanxi Province, China1."Journal of Integrative Agriculture.2025 Mar;:

198. [IF=6.5] Zixi Yang et al."Unraveling the flavor formation process of mellow and thick-type ripened Pu-erh tea through non-targeted metabolomics and metagenomics."Food Chemistry-X.2025 Mar;:102424

197. [IF=4.6] Li He et al."Neuroprotective Effects of Catechins by Differentially Affecting the Binding of Beta-amyloid and Its Aggregates to the Target Cells."MOLECULAR NEUROBIOLOGY.2025 Apr;:1-20

196. [IF=7.7] Youshudi Xie et al."Identification and characterization of two hydrolase genes involved in the hydrolysis of galloylated catechin in the tea plant Camellia sinensis."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES.2025 May;308:142620

195. [IF=6.5] Cunqiang Ma et al."Grade identification of ripened Pu-erh teas, and their differences of phenolic components, in vitro antioxidant capacity and hypoglycemic effect."Food Chemistry-X.2025 Apr;:102421

194. [IF=6.5] Yong Luo et al."The distribution of catechins and their derivatives among 114 Camellia plants and their correlation in different species and tea-processing suitability."Food Chemistry-X.2025 Apr;27:102461

193. [IF=8.5] Qi Chen et al."Trapping phenylacetaldehyde by litchi shell polyphenols and their characteristic catechins in chemical model and roast pork patty: Identification of catechins-adducts and toxicity assessment."FOOD CHEMISTRY.2025 Apr;:144357

192. [IF=7] Guangshan Zhao et al."Tea drinking effectively improves symptoms of diabetes and prevents hepatorenal damage in mice."FOOD RESEARCH INTERNATIONAL.2025 Apr;:116502

191. [IF=6.5] Jingzhe Li et al."Exploring seasonal differences in taste and nonvolatiles of Lu'an Guapian tea and perceptual interactions between odorants and EGCG via multi-sensory analysis and metabolomics."Food Chemistry-X.2025 Apr;:102497

190. [IF=2.7] De-Huan Yang et al."Classification of Lu'an Gua Pian tea before and after Qingming Festival using HPLC-DAD analysis: A comparison for different data analysis strategy."Analytical Methods.2025 Apr;:

189. [IF=4.2] Langhua Zhou et al."Antioxidant and Anticancer Mechanisms of Unique Polyphenols in Camellia ptilophylla: Focus on Gallocatechin-3,5-di-O-gallate and 1,2,4,6-Tetra-O-galloyl-β-D-glucopyranose."MOLECULES.2025 Apr;30(9):1919

188. [IF=4.7] Rui Wu et al."Chemical, Sensory Variations in Black Teas from Six Tea Cultivars in Jingshan, China."Foods.2025 Jan;14(9):1558

187. [IF=2.6] Yin Feilong et al."Peach gum edible coating film delays the browning of postharvest litchi and maintains its quality."JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE.2024 Sep;:1-10

186. [IF=4.7] Zhihao Ye et al."Tea’s Characteristic Components Eliminate Acrylamide in the Maillard Model System."Foods.2024 Jan;13(17):2836

185. [IF=6.5] Chunyin Qin et al."Chemical profile and in-vitro bioactivities of three types of yellow teas processed from different tenderness of young shoots of Huoshanjinjizhong (Camellia sinensis var. sinensis)."Food Chemistry-X.2024 Dec;24:101809

184. [IF=6.5] Wenjing Huang et al."Effect of tea stems on the quality formation of large-leaf yellow tea: Sensomics and flavoromics approaches."Food Chemistry-X.2024 Dec;24:101794

183. [IF=8.5] Xiangxin Gu et al."Effects of different low-temperature maceration times on the chemical and sensory characteristics of Syrah wine."FOOD CHEMISTRY.2024 Sep;:141230

182. [IF=8.5] Mingchun Wen et al."Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing."FOOD CHEMISTRY.2025 Jan;463:141222

181. [IF=3.3] Lu Wang et al."The variation of acrylamide and 5-hydroxymethylfurfural in tea with different roasting degrees and the effects of tea polyphenols on their formation."JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE.2024 Aug;:

180. [IF=4.8] Zixin Zhao et al."Extraction effects of eight deep eutectic solvents on dianhong black tea: From chemical composition analysis to antioxidant and α-glucosidase inhibitory assessments."Food Bioscience.2024 Oct;61:104923

179. [IF=7] Yao Chen et al."Intelligent identification of picking periods of Lu’an Guapian tea by an indicator displacement colorimetric sensor array combined with machine learning."FOOD RESEARCH INTERNATIONAL.2024 Nov;195:114960

178. [IF=7] Xiaoxiao Feng et al."Exploration of the flavor diversity of oolong teas: A comprehensive analysis using metabolomics, quantification techniques, and sensory evaluation."FOOD RESEARCH INTERNATIONAL.2024 Aug;:114868

177. [IF=8.5] Nanhuan Huang et al."Improved physicochemical and functional properties of dietary fiber from matcha fermented by Trichoderma viride."FOOD CHEMISTRY.2024 Dec;460:140784

176. [IF=4.7] Jiajun Cai et al."Comprehensive Analysis of the Yield and Leaf Quality of Fresh Tea (Camellia sinensis cv. Jin Xuan) under Different Nitrogen Fertilization Levels."Foods.2024 Jan;13(13):2091

175. [IF=5.7] Jiahao Chen et al."Dynamic DNA methylation modification in catechins and terpenoids biosynthesis during tea plant (Camellia sinensis) leaf development."Horticultural Plant Journal.2024 Jul;:

174. [IF=6.5] Gaozhong Yang et al."Effects of anaerobic treatment on the non-volatile ceomponents and angiotensin-converting enzyme (ACE) inhibitory activity of purple-colored leaf tea."Food Chemistry-X.2024 Jul;:101649

173. [IF=7] Xuyang Liu et al."LC-MS and GC–MS based metabolomics analysis revealed the impact of tea trichomes on the chemical and flavor characteristics of white tea."FOOD RESEARCH INTERNATIONAL.2024 Sep;191:114740

172. [IF=8.5] Guojian Deng et al."Mechanism of key volatiles in osmanthus scented green tea on the improvement of its aroma and taste quality."FOOD CHEMISTRY.2024 Dec;460:140560

171. [IF=3.2] Xiaomei Long et al."Changes in phenolic compounds of Phyllanthus emblica juice during different storage temperature and pH conditions."JOURNAL OF FOOD SCIENCE.2024 Jun;89(7):4312-4330

170. [IF=6] Zhe Wang et al."High-throughput screening, “protein–metabolite" interaction, and hypoglycemic effect investigations of α-amylase inhibitors in teas using an affinity selection-mass spectrometry method."LWT-FOOD SCIENCE AND TECHNOLOGY.2024 Jul;203:116392

169. [IF=6.5] Yida Wu et al."Investigation of the quality of Lu'an Guapian tea during grain rain period by sensory evaluation, objective quantitative indexes and metabolomics."Food Chemistry-X.2024 Jun;:101595

168. [IF=3.5] Xi Zhao et al."Impact of Storage Temperature on Green Tea Quality: Insights from Sensory Analysis and Chemical Composition."Beverages".2024 Jun;10(2):35

167. [IF=4.5] Xianyang Zhao et al."Development of UHPLC-Q-Exactive Orbitrap/MS Technique for Determination of Proanthocyanidins (PAs) Monomer Composition Content in Persimmon."Plants-Basel".2024 Jan;13(11):1440

166. [IF=8.8] Xianqiang Chen et al."Ultrasound-assisted extraction of polyphenols from lotus rhizome epidermis by alcohol/salt-based aqueous two-phase system: Optimization, extraction mechanism and antioxidant activities."FOOD CHEMISTRY".2024 May;:139620

165. [IF=9.7] Xinxin Zhang et al."EGC enhances tumor antigen presentation and CD8+ T cell-mediated antitumor immunity via targeting oncoprotein SND1."CANCER LETTERS".2024 Jun;592:216934

164. [IF=6] Michelle Farrell et al."Microencapsulation of purple tea polyphenols using the vibrating nozzle ionotropic gelation technology: Metabolomics, bioactivity, and application in milky tea."LWT-FOOD SCIENCE AND TECHNOLOGY".2024 Apr;:116099

163. [IF=6.1] Hanchen Zhou et al."The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature."Food Chemistry-X".2024 Jun;22:101371

162. [IF=4.7] Ye Yutong et al."Quality analysis and antioxidant activity of different types of tea powder."Food Production Processing and Nutrition".2024 Dec;6(1):1-13

161. [IF=8.1] Wei Hu et al."Revealing the variances in color formation and bioactivities of seven catechin monomers throughout the enzymatic reaction by colorimetric and mass spectrometry."FOOD RESEARCH INTERNATIONAL".2024 May;184:114266

160. [IF=3.4] Kou Xingran et al."Citrus Pu-erh tea extract intake before or after lipolysis in simulated digestion reduces the release of free fatty acids."Journal of Food Measurement and Characterization".2024 Feb;:1-12

159. [IF=4.3] Xin Guan et al."Variation of taste and odor compounds in tea beverage after microbial fermentation by HPLC–MS, GC×GC–O–MS, GC–MS, and sensory evaluation."JOURNAL OF FOOD COMPOSITION AND ANALYSIS".2024 Apr;128:106075

158. [IF=4.5] Haowei Guo et al."Influence of Various Tea Utensils on Sensory and Chemical Quality of Different Teas."Plants-Basel".2024 Jan;13(5):669

157. [IF=5.2] Yueqi Wang et al."Identification of Key Genes Associated with 1,2,6-Tri-O-galloyl-β-D-glucopyranose Accumulation in Camellia sinensis Based on Transcriptome Sequencing."Foods".2024 Jan;13(3):495

156. [IF=5.2] Dan Wu et al."Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity."Foods".2024 Jan;13(3):482

155. [IF=6.1] Qiong Chen et al."In Situ Oral Metabolism Analysis of Astringent Compounds in Tea by Paper Spray Mass Spectrometry, Electrospray Mass Spectrometry, Turbidimetry, and Sensory Evaluation."JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY".2024;XXXX(XXX):XXX-XXX

154. [IF=8.8] Shengxiao Su et al."Chemical, sensory and biological variations of black tea under different drying temperatures."FOOD CHEMISTRY".2024 Jul;446:138827

153. [IF=4.3] Linmu Chen et al."The spatiotemporal variations of L-glutamic acid and catechins during the development of etiolated tea leaves in ‘Huangjinye’."SCIENTIA HORTICULTURAE.2024 Mar;328:112888

152. [IF=6] Shimao Fang et al."Ancient tea plants black tea taste determinants and their changes over manufacturing processes."LWT-FOOD SCIENCE AND TECHNOLOGY.2024 Jan;:115750

151. [IF=8.1] Ning Yue et al."Imidacloprid triggered changes in strawberry fruits on edible quality and phenolic profiles by applied at two growth stages."FOOD RESEARCH INTERNATIONAL.2024 Mar;179:114031

150. [IF=4.2] Jiangcheng Ye et al."Effects of Fermented Extracts of Wuniuzao Dark Loose Tea on Hepatic Sterol Regulatory Element-Binding Protein Pathway and Gut Microbiota Disorder in Obese Mice."JOURNAL OF NUTRITION.2023 Dec;:

149. [IF=6] Liping Shen et al."A green process for extracting and purifying coconut mesocarp polyphenols."Sustainable Chemistry and Pharmacy.2024 Feb;37:101413

148. [IF=8.8] Zihao Qiu et al."Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou Dancong) leaf quality under different nitrogen fertilization regimes."FOOD CHEMISTRY.2024 May;439:138127

147. [IF=6.5] Feng Zhou et al."Integrated metabolomics and transcriptomic analysis reveals metabolic changes of flavor compounds of Camellia assamica host plant after parasitized by Viscum articulatum."PLANT PHYSIOLOGY AND BIOCHEMISTRY.2023 Dec;205:108157

146. [IF=8.8] Zixuan Xie et al."Mechanism of aroma enhancement methods in accelerating Congou black tea acidification subjected to room temperature storage."FOOD CHEMISTRY.2023 Nov;:137837

145. [IF=8.8] Duoduo Zhang et al."Quality analysis of steamed beef with black tea and the mechanism of action of main active ingredients of black tea on myofibrillar protein."FOOD CHEMISTRY.2023 Nov;:137997

144. [IF=4.5] Xiaogang Lei et al."Genome-Wide Association Studies of Biluochun Tea Plant Populations in Dongting Mountain and Comprehensive Identification of Candidate Genes Associated with Core Agronomic Traits by Four Analysis Models."Plants-Basel.2023 Jan;12(21):3719

143. [IF=5] Jian-Chang Jin et al."Widely targeted metabolomics reveals the effect of different raw materials and drying methods on the quality of instant tea."Frontiers in Nutrition.2023; 10: 1236216

142. [IF=6] Yunfei Hu et al."Comparative analysis of flavonoids extracted from Dendrobium chrysotoxum flowers by supercritical fluid extraction and ultrasonic cold extraction."Sustainable Chemistry and Pharmacy.2023 Dec;36:101267

141. [IF=6.1] Li Wang et al."A newly isolated intestinal bacterium involved in C-ring cleavage of flavan-3-ol monomers and antioxidant activity of the metabolites."Food & Function.2023 Oct;:

140. [IF=6.1] Si TAN et al."Green tea polyphenols improved the physicochemical stability of mango powder during storage."Food Chemistry-X.2023 Dec;20:100941

139. [IF=3.7] Manni Tong et al."Quality Characteristics of White Leaf Tea of ‘Baiye 1’ (Camellia sinensis) in Different Producing Areas."Agronomy-Basel.10.3390/agronomy13102526

138. [IF=5.2] Zhe Wang et al."Fermentation of Betaphycus gelatinum Using Lactobacillus brevis: Growth of Probiotics, Total Polyphenol Content, Polyphenol Profile, and Antioxidant Capacity."Foods.10.3390/foods12183334

137. [IF=5.6] Yan Duan et al."UPLC-Q–TOF–MS, network analysis, and molecular docking to investigate the effect and active ingredients of tea-seed oil against bacterial pathogens."Frontiers in Pharmacology.10.3389/fphar.2023.1225515

136. [IF=8.1] Qiuwen Yu et al."Chemometrics-based investigation of non-volatiles/volatiles flavor of tencha (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1)."FOOD RESEARCH INTERNATIONAL.10.1016/j.foodres.2023.113461

135. [IF=3.3] Huijie Wei et al."Effect of baking treatment on quality, nonvolatile and volatile compounds of Liupao tea."INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY.2023 Aug;:

134. [IF=3.9] Gang He et al."Tibetan tea reduces obesity brought on by a high-fat diet and modulates gut flora in mice."Food Science & Nutrition.2023 Aug;:

133. [IF=6] Tiehan Li et al."Exploring the mysterious effect of piling fermentation on Pu-erh tea quality formation: Microbial action and moist-heat action."LWT-FOOD SCIENCE AND TECHNOLOGY.2023 Aug;185:115132

132. [IF=5.2] Miao Zhu et al."Effects of Processing Conditions and Simulated Digestion In Vitro on the Antioxidant Activity, Inhibition of Xanthine Oxidase and Bioaccessibility of Epicatechin Gallate."Foods.2023 Jan;12(14):2807

131. [IF=8] Feng Jia et al."Functional properties and release characteristics of tea polyphenols-loaded gliadin films enforced by cinnamaldehyde."Food Packaging and Shelf Life.2023 Nov;39:101144

130. [IF=8.1] Jingna Yan et al."Sensory-directed isolation and identification of an intense salicin-like bitter compound in infected teas with bird’s eye spot disease."FOOD RESEARCH INTERNATIONAL.2023 Jul;:113272

129. [IF=8.8] Yang Chen et al."Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure."FOOD CHEMISTRY.2023 Dec;428:136773

128. [IF=8.8] Yuming Wei et al."Metabolomics analysis reveals the mechanism underlying the improvement in the color and taste of yellow tea after optimized yellowing."FOOD CHEMISTRY.2023 Jul;:136785

127. [IF=1.7] Zhouyi Zhang et al."Revealing the differences in phenolics in different parts of Taraxacum mongolicum using UPLC-MS/MS."Phytochemistry Letters.2023 Aug;56:13

126. [IF=5.2] Zhuanrong Wu et al."Effects of Sun Withering Degree on Black Tea Quality Revealed via Non-Targeted Metabolomics."Foods.2023 Jan;12(12):2430

125. [IF=8.6] Qixian Zhang et al."Effectively recovering catechin compounds in the removal of caffeine from tea polyphenol extract by using hydrophobically modified collagen fiber."SEPARATION AND PURIFICATION TECHNOLOGY.2023 Jun;:124325

124. [IF=8.8] Suwan Zhang et al."Metabolomics reveals the effects of different storage times on the acidity quality and metabolites of large-leaf black tea."FOOD CHEMISTRY.2023 Nov;426:136601

123. [IF=8.8] Lijuan Zhu et al."Browning inhibition in fresh-cut Chinese water chestnut under high pressure CO2 treatment: regulation of reactive oxygen species and membrane lipid metabolism."FOOD CHEMISTRY.2023 Jun;:136586

122. [IF=8.8] Zhengyu Ren et al."Cost-effective colorimetric sensor for authentication of protected designation of origin (PDO) Longjing green tea."FOOD CHEMISTRY.2023 Nov;427:136673

121. [IF=4.342] Wei Ran et al."Comprehensive analysis of environmental factors on the quality of tea (Camellia sinensis var. sinensis) fresh leaves."SCIENTIA HORTICULTURAE.2023 Sep;319:112177

120. [IF=5.561] Zihao Qiu et al."The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong."Foods.2023 Jan;12(10):2067

119. [IF=6.443] Yuchuan Li et al."Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes."Food Chemistry-X.2023 Jun;18:100731

118. [IF=6.449] Shengkai Luo et al."Proteolytic activation and characterization of recombinant polyphenol oxidase from Rosa chinensis for efficient synthesis of theaflavins."INDUSTRIAL CROPS AND PRODUCTS.2023 Sep;200:116810

117. [IF=4.52] Yue-Yue Chang et al."Targeted metabolites analysis and variety discrimination of Wuyi rock tea by using a whole-process chemometric-assisted HPLC-DAD strategy."JOURNAL OF FOOD COMPOSITION AND ANALYSIS.2023 Aug;121:105365

116. [IF=4.125] Fengnan Li et al."Effects of processing methods on quality, antioxidant capacity, and cytotoxicity of Ginkgo biloba leaf tea product."JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE.2023 Mar;:

115. [IF=4.927] Yushi Zou et al."Discovery and Flavor Characterization of High-Grade Markers in Baked Green Tea."MOLECULES.2023 Jan;28(6):2462

114. [IF=6.056] Cunqiang Ma et al."Investigation and dynamic changes of phenolic compounds during a new-type fermentation for ripened Pu-erh tea processing."LWT-FOOD SCIENCE AND TECHNOLOGY.2023 Apr;180:114683

113. [IF=7.425] Yiyi Zhang et al."Indicator displacement assay for freshness monitoring of green tea during storage."FOOD RESEARCH INTERNATIONAL.2023 May;167:112668

112. [IF=8.022] Guangshan Zhao et al."Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice."Food Science and Human Wellness.2023 Sep;12:1660

111. [IF=9.231] Yingying Li et al."Nontargeted and targeted metabolomics analysis for evaluating the effect of “golden flora" amount on the sensory quality, metabolites, and the alpha-amylase and lipase inhibitory activities of Fu brick tea."FOOD CHEMISTRY.2023 Aug;416:1

110. [IF=5.895] Zongde Jiang et al."Formation Mechanism of Di-N-ethyl-2-pyrrolidinone-Substituted Epigallocatechin Gallate during High-Temperature Roasting of Tea."JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY.2023;XXXX(XXX):XXX-XXX

109. [IF=7.425] Jingna Yan et al."Characterization of triterpenoids as possible bitter-tasting compounds in teas infected with bird’s eye spot disease."FOOD RESEARCH INTERNATIONAL.2023 Feb;:112643

108. [IF=9.231] Yan Hou et al."Widely targeted metabolomics and HPLC analysis elaborated the quality formation of Yunnan pickled tea during the whole process at an industrial scale."FOOD CHEMISTRY.2023 Feb;:135716

107. [IF=5.561] Weitao Wang et al."Reduction in Five Harmful Substances in Fried Potato Chips by Pre-Soaking Treatment with Different Tea Extracts."Foods.2023 Jan;12(2):321

106. [IF=7.104] Guowei Man et al."Comparison of thermal and non-thermal extraction methods on free and bound phenolics in pomegranate peel."Innovative Food Science & Emerging Technologies.2023 Mar;84:103291

105. [IF=7.425] Shuxian Shao et al."Production regions discrimination of Huangguanyin oolong tea by using the content of chemical components and rare earth elements."FOOD RESEARCH INTERNATIONAL.2023 Mar;165:112522

104. [IF=5.561] Kai Zheng et al."Effect of Tea Polyphenols on the Storage Stability of Non-Fermented Frozen Dough: Protein Structures and State of Water."Foods.2023 Jan;12(1):80

103. [IF=6.056] Lu Han et al."Effects of catechin types found in tea polyphenols on the structural and functional properties of soybean protein isolate–catechin covalent complexes."LWT-FOOD SCIENCE AND TECHNOLOGY.2023 Jan;173:114336

102. [IF=6.449] Xiaoxiao Wang et al."Physicochemical analysis, sensorial evaluation, astringent component identification and aroma-active compounds of herbaceous Peony (Paeonia lactiflora Pall) black tea."INDUSTRIAL CROPS AND PRODUCTS.2023 Mar;193:116159

101. [IF=3.553] Qian He et al."Phenolic compounds, antioxidant activity and sensory evaluation of sea buckthorn (Hippophae rhamnoides L.) leaf tea."Food Science & Nutrition.2022 Nov;:

100. [IF=5.318] Su Zhou et al."Pu'er raw tea extract alleviates lipid deposition in both LO2 cells and Caenorhabditis elegans."Food Bioscience.2022 Dec;50:102172

99. [IF=5.561] Qingping Ma et al."Pea-Tea Intercropping Improves Tea Quality through Regulating Amino Acid Metabolism and Flavonoid Biosynthesis."Foods.2022 Jan;11(22):3746

98. [IF=7.425] Jifan Zhang et al."Inconsistency between polyphenol-enzyme binding interactions and enzyme inhibition: Galloyl moiety decreases amyloglucosidase inhibition of catechins."FOOD RESEARCH INTERNATIONAL.2023 Jan;163:112155

97. [IF=7.425] Lin Chen et al."Effects of different phenolic compounds on the interfacial behaviour of casein and the action mechanism."FOOD RESEARCH INTERNATIONAL.2022 Dec;162:112110

96. [IF=7.425] Jie Zhou et al."Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya."FOOD RESEARCH INTERNATIONAL.2022 Dec;162:112169

95. [IF=5.561] Jiazheng Lin et al."Effect of the Presence of Stem on Quality of Oolong Tea."Foods.2022 Jan;11(21):3439

94. [IF=6.443] Qian Tu et al."The effects of regions and the wine aging periods on the condensed tannin profiles and the astringency perceptions of Cabernet Sauvignon wines."Food Chemistry-X.2022 Oct;15:100409

93. [IF=6.056] Yuchuan Li et al."Pile-fermentation of dark tea: Conditions optimization and quality formation mechanism."LWT-FOOD SCIENCE AND TECHNOLOGY.2022 Jul;:113753

92. [IF=7.514] Jie Meng et al."Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples."FOOD CHEMISTRY. 2022 Oct;390:133155

91. [IF=5.154] Erdong Yuan et al."Roles of Adinandra nitida (Theaceae) and camellianin A in HCl/ethanol-induced acute gastric ulcer in mice."Food Science and Human Wellness. 2022 Jul;11:1053

90. [IF=5.396] Chunyin Qin et al."Comparison on the chemical composition, antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion."Food & Function. 2022 Apr;:

89. [IF=7.514] Zisheng Han et al."LC-MS based metabolomics and sensory evaluation reveal the critical compounds of different grades of Huangshan Maofeng green tea."Food Chem. 2022 Apr;374:131796

88. [IF=6.576] Guowei Man et al."Profiling Phenolic Composition in Pomegranate Peel From Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS."Front Nutr. 2021; 8: 807447

87. [IF=5.279] Wei Wang et al."Effect of Active Groups and Oxidative Dimerization on the Antimelanogenic Activity of Catechins and Their Dimeric Oxidation Products."J Agr Food Chem. 2022;70(4):1304–1315

86. [IF=4.556] Yiyu Ren et al."Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea."J Food Compos Anal. 2022 Apr;107:104387

85. [IF=3.463] Ping Wang et al."Systematic transcriptomic and metabolomic analysis of walnut (Juglans regia L.) fruit to trace variations in antioxidant activity during ripening."Sci Hortic-Amsterdam. 2022 Mar;295:110849

84. [IF=6.475] Guoping Lai et al."Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing."Food Res Int. 2022 May;155:111041

83. [IF=7.514] Yuqing Cui et al."Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV–visible spectroscopy and mass spectrometry."Food Chem. 2022 Aug;386:132788

82. [IF=4.411] Shuang Mei et al."The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis."Molecules. 2022 Jan;27(5):1708

81. [IF=4.411] Peng-Cheng Zheng et al.Untargeted Metabolomics Combined with Bioassay Reveals the Change in Critical Bioactive Compounds during the Processing of Qingzhuan Tea.Molecules. 2021 Jan;26(21):6718

80. [IF=0.986] Lingli Sun et al."Phytochemical Profiles and Bioactivities of Cake Tea Leaves Obtained From the Same Cultivar: A Comparative Analysis:."Nat Prod Commun. 2020;15(8):

79. [IF=2.19] Qiaoran Zheng et al."The effect of storage time on tea Polyphenols, catechin compounds, total flavones and the biological activity of Ya’an Tibetan tea (Camellia sinensis)."Journal Of Food Processing And Preservation. 2021 Oct 11

78. [IF=2.431] Wang  Yanfeng et al."Effects of temperature and ultrasonic scaler on the infusion process of green tea leaves and catechins stability under ultrasonic vibration."J Food Meas Charact. 2021 Aug;15(4):3598-3607

77. [IF=2.72] Wenfeng Li et al."Citric acid-enhanced dissolution of polyphenols during soaking of different teas."J Food Biochem. 2019 Dec;43(12):e13046

76. [IF=2.863] Penghui Yu et al."Distinct variation in taste quality of Congou black tea during a single spring season."Food Sci Nutr. 2020 Apr;8(4):1848-1856

75. [IF=2.896] Li Wang et al."Separation of epigallocatechin gallate and epicatechin gallate from tea polyphenols by macroporous resin and crystallization."Anal Methods-Uk. 2021 Feb;13(6):832-842

74. [IF=3.361] Mengmeng Yuan et al."The interaction of dietary flavonoids with xanthine oxidase in vitro: molecular property-binding affinity relationship aspects."Rsc Adv. 2019 Apr;9(19):10781-10788

73. [IF=4.098] Chunlin Li et al."Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy."Spectrochim Acta A. 2020 Feb;227:117697

72. [IF=4.24] Nana Li et al."Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells."Food Biosci. 2021 Aug;42:101204

71. [IF=4.379] Feng  Lin et al."Chemical profile changes during pile fermentation of Qingzhuan tea affect inhibition of α-amylase and lipase."Sci Rep-Uk. 2020 Feb;10(1):1-10

70. [IF=4.379] Zhang  Sifeng et al."Prediction of suitable brewing cuppages of Dahongpao tea based on chemical composition, liquor colour and sensory quality in different brewing."Sci Rep-Uk. 2020 Jan;10(1):1-11

69. [IF=4.411] Lin Chen et al."Dehydroascorbic Acid Affects the Stability of Catechins by Forming Conjunctions."Molecules. 2020 Jan;25(18):4076

68. [IF=4.653] Fengfeng Qu et al."Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice."Mol Nutr Food Res. 2019 Sep;63(17):1801039

67. [IF=4.952] Fengfeng Qu et al."The new insight into the influence of fermentation temperature on quality and bioactivities of black tea."Lwt Food Sci Technol. 2020 Jan;117:108646

66. [IF=4.952] Jinjie Hua et al."Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation."Lwt Food Sci Technol. 2021 Mar;139:110291

65. [IF=4.952] Jia Xue et al."Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles."Lwt Food Sci Technol. 2020 Apr;124:109147

64. [IF=4.952] Ting Zhao et al."The antioxidant property and α-amylase inhibition activity of young apple polyphenols are related with apple varieties."Lwt Food Sci Technol. 2019 Aug;111:252

63. [IF=5.279] Hui Li et al."Relationship between Secondary Metabolism and miRNA for Important Flavor Compounds in Different Tissues of Tea Plant (Camellia sinensis) As Revealed by Genome-Wide miRNA Analysis."J Agr Food Chem. 2021;69(6):2001–2012

62. [IF=5.279] Huan Zhang et al."Metabolite and Microbiome Profilings of Pickled Tea Elucidate the Role of Anaerobic Fermentation in Promoting High Levels of Gallic Acid Accumulation."J Agr Food Chem. 2020;68(47):13751–13759

61. [IF=5.279] Yinyin Liao et al."Effect of Major Tea Insect Attack on  Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea (Camellia sinensis) Leaves."J Agr Food Chem. 2019;67(24):6716–6724

60. [IF=5.279] Zongde Jiang et al."Model Studies on the Reaction Products Formed at Roasting Temperatures from either Catechin or Tea Powder in the Presence of Glucose."J Agr Food Chem. 2021;69(38):11417–11426

59. [IF=5.396] Xingliang Xiang et al."Potential hypoglycemic metabolites in dark tea fermented by Eurotium cristatum based on UPLC-QTOF-MS/MS combining global metabolomic and spectrum–effect relationship analyses."Food Funct. 2021 Aug;12(16):7546-7556

58. [IF=5.64] Zhang  Yuxiang et al."Structure-Dependent Inhibition of Stenotrophomonas maltophilia by Polyphenol and Its Impact on Cell Membrane."Front Microbiol. 2019 Nov;0:2646

57. [IF=5.81] Mu  Jianfei et al."Determination of Polyphenols in Ilex kudingcha and Insect Tea (Leaves Altered by Animals) by Ultra-high-performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UHPLC-QqQ-MS) and Comparison of Their Anti-Aging Effects."Fro

56. [IF=6.475] Shuyuan Liu et al."Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells."Food Res Int. 2021 Oct;148:110604

55. [IF=6.475] Mingchun Wen et al."Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing."Food Res Int. 2021 Oct;148:110588

54. [IF=6.475] Zhenming Yu et al."Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment."Food Res Int. 2020 Mar;129:108842

53. [IF=7.514] Piaopiao Long et al."Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation."Food Chem. 2020 May;311:125895

52. [IF=7.514] Zhongqin Chen et al."Insight into the inactivation mechanism of soybean Bowman-Birk trypsin inhibitor (BBTI) induced by epigallocatechin gallate and epigallocatechin: Fluorescence, thermodynamics and docking studies."Food Chem. 2020 Jan;303:125380

51. [IF=7.514] Yinyin Liao et al."Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry."Food Chem. 2019 Sep;292:204

50. [IF=3.06] Zeyi Ai et al."Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers."Molecules. 2019 Jan;24(6):1185

49. [IF=3.361] Ji Li et al."Efficient extraction of major catechins in Camellia sinensis leaves using green choline chloride-based deep eutectic solvents."Rsc Adv. 2015 Nov;5(114):93937-93944

48. [IF=3.361] Yun Liu et al."Structural characteristics of (?)-epigallocatechin-3-gallate inhibiting amyloid Aβ42 aggregation and remodeling amyloid fibers."Rsc Adv. 2015 Jul;5(77):62402-62413

47. [IF=3.894] Lixia  Liu et al."Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage."Food Nutr Res. 2017;61(1):1333390

46. [IF=4.098] Chunlin Li et al."Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy."Spectrochim Acta A. 2019 Jan;206:254

45. [IF=4.411] Cuihua Chen et al."Quality Evaluation of Apocyni Veneti Folium from Different Habitats and Commercial Herbs Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis."Molecules. 2018 Mar;23(3):5

44. [IF=4.952] Fengfeng Qu et al."Effect of different drying methods on the sensory quality and chemical components of black tea."Lwt Food Sci Technol. 2019 Jan;99:112

43. [IF=5.279] Jie Zhou et al."LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea."J Agr Food Chem. 2019;67(19):5405–5412

42. [IF=5.396] Jiachan Zhang et al."Understanding the role of extracts from sea buckthorn seed residues in anti-melanogenesis properties on B16F10 melanoma cells."Food Funct. 2018 Oct;9(10):5402-5416

41. [IF=5.396] Bo Chen et al."Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols."Food Funct. 2018 Sep;9(9):4858-4864

40. [IF=7.514] Xuemei Guo et al."An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glucosidase and α-amylase."Food Chem. 2018 Apr;2

39. [IF=7.514] Shuyuan Liu et al."Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake."Food Chem. 2017 Nov;234:168

38.  Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https:##doi.org/10.1016/j.foodchem.2017.

37.  Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https:##doi.org/10.1016/j.foodchem.2017.

36.  Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https:##doi.org/10.1016/j.foodchem.2017.

35.  Liao, Yinyin, et al. "Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves." Journal of agricultural and food chemistry 67.24 (2019): 6716-6724.https:##doi.org/10.1021/acs.j

34.  Yu, Penghui, et al. "Distinct variation in taste quality of Congou black tea during a single spring season." Food science & nutrition 8.4 (2020): 1848-1856.https:##doi.org/10.1002/fsn3.1467

33.  Hua, Jinjie, et al. "Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation." LWT 139 (2021): 110291.https:##doi.org/10.1016/j.lwt.2020.110291

32.  張恒,鄭俏然,何靖柳,韋婷,劉翔,章斌.藏茶玫瑰烏梅無糖復合飲料研制及功能性成分分析與抗氧化研究[J].食品科技,2021,46(01):46-53+61.

31.  夏興莉,廖界仁,任太鈺,馬媛春,王玉花,房婉萍,朱旭君.低溫處理對茶樹葉片中γ-氨基丁酸和其他活性成分含量的影響[J].植物資源與環境學報,2020,29(05):75-77.

30.  喬小燕,操君喜,車勁,陳棟,劉仲華.基于滋味和香氣成分結合化學計量法鑒別不同貯藏年份的康磚茶[J].現代食品科技,2020,36(09):260-269+299.

29.  蔡爽, 阮成江, 杜維,. 高效液相色譜-串聯質譜法同時測定沙棘中的11種黃酮類物質[J]. 分析科學學報, 2019, 035(003):311-316.

28.  湯曉  葉莊新  余偉 等. 南瓜酚類物質及抗氧化活性受烹飪方式的影響[J]. 食品科技  2016  041(005):223-228.

27.  王瑋, 張紀偉, 趙一帆,. 瀾滄江流域部分茶區古茶樹資源生化成分多樣性的分析[J]. 分子植物育種, 2020(2).

26.  黃華林, 李波, 陳海強,. 不同萎凋時間英紅九號和黃化英紅九號紅茶品質比較[J]. 山西農業科學, 2019, 047(010):1742-1745.

25.  喬小燕, 陳維, 馬成英,. 不同倉儲地康磚茶生化成分比較分析[J]. 廣東茶業, 2019(5):7-10.

24.  湯曉, 倪翠陽, 王麗英,. 煮制時間與二次煮制對紫娟普洱茶抗氧化性的影響[J]. 食品工業科技, 2015, 036(008):141-147.

23.  萎凋方式對黃化英紅九號紅茶品質的影響

22.  喬小燕, 黃國資, 王秋霜,. 連續化生產線加工過程中客家炒青綠茶主要品質成分的化[J]. 廣東農業科學, 2014, 041(024):91-94.

21.  喬小燕, 黃華林, 李波,. 廣東客家茶樹種質資源兒茶素特性分析[J]. 江西農業學報, 2019, v.31(01):30-33.

20.  杜歡歡, 蔡艷妮, 江海,. 超高效液相串聯質譜同時測定茶葉中的8種有效物質[J]. 陜西理工大學學報(自然科學版), 2017(33):74-80.

19.  蔡爽, 阮成江, 杜維, et al. 沙棘葉片,果肉和種子中黃酮類成分的差異[J]. 植物資源與環境學報, 2019(4).

18.  歐惠算,張靈枝,王維生.阿姆斯特丹散囊菌對六堡茶品質成分的影響研究[J].中國茶葉加工,2019(02):45-50.

17.  喬小燕, 饒幸霞, 黃國資,. 傳統客家綠茶在連續化生產線加工過程中主要品質成分的變化趨勢研究[J]. 江西農業學報, 2015, 000(004):74-77.

16.  李波, 黃華林, 陳欣,. 不同季節黃化英紅九號紅茶品質比較分析[J]. 山東農業科學, 2019.

15.  喬小燕, 李崇興, 姜曉輝,. 不同等級CTC紅碎茶生化成分分析[J]. 食品工業科技, 2018, 039(010):83-89.

14.  魏琳,盧鳳美,邵宛芳,袁唯.酸茶發酵過程中感官品質及主要成分變化分析[J].食品研究與開發,2019,40(14):69-74.

13.  周曉晴, 胡立文, 羅琦,. 茶葉籽油中茶多酚和兒茶素的測定[J]. 食品工業科技, 2019.

12.  梅雙, 喬小燕, 陳維,. 半連續化生產線和傳統單機加工客家炒青綠茶主要品質成分比較分析[J]. 廣東農業科學, 2019(11).

11.  喬小燕, 黃秀新, 黃國資,. "二炒"溫度對傳統客家炒青綠茶品質特征的影響[J]. 廣東農業科學, 2015, 042(001):96-99.

10.  王婷婷  蔡自建  蒲婉欣 等. 四川綠茶感官品質與主要滋味貢獻成分分析[J]. 食品研究與開發  2018  39(24):162-167.

9.  喬小燕, 李波, 何梓卿,. 黃化英紅九號紅茶體外抗氧化活性分析[J]. 農產品質量與安全, 2018, 000(005):85-90.

8.  李輝, 張靜, 李超,. 賀蘭山東麓不同陳釀年份赤霞珠干紅葡萄酒中酚類物質對澀感質量的影響[J]. 食品與發酵工業, 2018, 44(10):42-48.

7.  胡立文, 周曉晴, 張彬,. 茶葉籽油中兒茶素類和咖啡因含量測定[J]. 南昌大學學報(理科版), 2018, 42(002):134-138,146.

6.  郭穎, 黃峻榕, 陳琦,. 茶葉中兒茶素類測定方法的優化[J]. 食品科學, 2016, 37(06):137-141.

5.  阮鳴. HPLC法同時測定六安瓜片中七種活性成分的含量[J]. 南京曉莊學院學報  2016(6):37-42.

4.  尹雄章,肖珊,馬郁文,方春香,張曉雪.表沒食子兒茶素對小鼠離體腦片及氧糖剝奪損傷HT-22細胞系的保護作用[J].醫藥導報,2019,38(10):1259-1263.

3.  張雯,宋俊科,朱曉瑜,楊海光,許啟泰,杜冠華.表沒食子兒茶素對TLR4/MyD88/NF-κB通路減輕脂多糖誘導BV2細胞炎癥反應的影響[J].醫藥導報,2020,39(06):735-740.

2.  張雯,宋俊科,朱曉瑜,楊海光,王海港,許啟泰,杜冠華.表沒食子兒茶素促進Nrf2的核轉位減輕Aβ_(25-35)SH-SY5Y細胞的損傷[J].中國藥理學通報,2019,35(10):1393-1398.

1.  沈揚, 朱方, 沈灣灣,. 植物多酚基元輔助遞送siRNA的構效關系研究[J]. 高等學校化學學報, 2020, 41(4).

2011年開始我們致力于在生命科學領域生物醫學實驗技術及論文潤色服務,協助客戶各類實驗服務及論文潤色十多年,是您值得信賴的科研合作伙伴!

如果您受時間、試驗條件等限制而無法完成您的課題研究,歡迎您與我們聯系。

實驗技術服務:



滬公網安備 31011802001676號